A methanol refomer is a device used in chemical engineering, especially in the area of fuel cell technology, which can produce pure hydrogen gas and carbon dioxide by reacting a methanol and water (steam) mixture.
Methanol is transformed into hydrogen and carbon dioxide by pressure and heat and interaction with a catalyst.
Contents |
A mixture of water and methanol with a molar concentration ratio (water:methanol) of 1.0 - 1.5 is pressurized to approximately 20 bar, vaporized and heated to a temperature of 250 - 360 °C. The hydrogen that is created is separated through the use of Pressure swing adsorption or a hydrogen-permeable membrane made of polymer or a palladium alloy.
There are two basic methods of conducting this process.
With either design, not all of the hydrogen is removed from the product gases (raffinate). Since the remaining gas mixture still contains a significant amount of chemical energy, it is often mixed with air and burned to provide heat for the endothermic reforming reaction.
Methanol reformers are being considered as a component of a hydrogen fuel cell-powered vehicle. A prototype car, the NECAR 5, was introduced by Daimler-Chrysler in the year 2000. The primary advantage of a vehicle with a reformer is that it does not need a pressurized gas tank to store hydrogen fuel; instead methanol is stored as a liquid. The logistic implications of this are great; pressurized hydrogen is difficult to store and produce. Also, this could help ease the public's concern over the danger of hydrogen and thereby make fuel cell powered vehicles more attractive. However, methanol, like gasoline, is toxic and (of course) flammable. The cost of the PdAg membrane and its susceptibility to damage by temperature changes provide obstacles to adoption.
Another problem is that although hydrogen power produces energy without CO2, a methanol reformer creates the gas as a byproduct. The high level of greenhouse gases in our atmosphere significantly contributes to global warming.
Methanol (prepared from natural gas) that is used in an efficient fuel cell, however, releases less CO2 in the atmosphere than gasoline, in a net analysis.[1]